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Abstract: A cationic rcatntngcmcnt was obscrvcd in the rnlramolccular clcctrophiltc suhst.itution of a 

trioxygenated benayl ether. The crysktl strttc~ttreof the prtwlttct is prescn(cd. 

In the course of synthetic studies on the anticancer agent pan~tis~tin (l),l we have examined the 

possibility of forming the central C-C bond of the target skeleton by intramolecular eiectrophilic aromatic 

substitution (3 + 2).2 Our primary concern was the degree of stereoselectivity which might be induced in this 

cyclization.3 In this Letter we describe how, under selected conditions, one substrate was converted not to 2 or 

the truns-fused isomer of 2 but instead to a constitutional isomer. The crystal structure of the product is 

presented and a mechanism for the implicit rearrangement is proposed 

2 3 

The substrate for cyclization was prepared as follows. l-Ethoxyethyl-protected piperonyl akohol(4) was 

metala& by the action of n-&&i in diethyl ether (WC -P RT). The aryl lithium species was quenched with 

boranes to provide the borohydxide, which was in turn cleaved with basic peroxide. From this sequence we 

obtained an 85% yield of phenol 5.h The phenol was converted to its benzyl ether (SO%)& and the EE group 

removed by acid hydrolysis (92%) to yield 6. 6a Alcohol 6 was coupled to conduritol 76a.7 using 

trichloroacetimidate methodology (two steps, 23-264 overall).9 Further optimization of this coupling was 

envisioned, but postponed pending a satisfactory outcome of the subsequent cyclization step. Ether s&1 was 

desilylated by TEtAF in THF to give alcohol 96a in 93% yield. 
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Scheme 1 

We attempted to induce cyclization by uiflating the fmc hydroxyl group of 9. Specifically, exposure of 9 

to trifluoromethanesulfonic anhydride and 2,6-di-rerz-butylpyridine (CH2C12,0° + RT) generated a major 

product (50%). the 1H NMR and MS data of which were consistent with the expected pentacycle 10. The 

stereochemistry of the new ring junction was not clear from NMR experiments, so a single crystal X-ray 

diffraction analysis was undertaken_ The result is shown in the Figure below.10 
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A mechanism which explains the formation of pentacycle 116 is shown in Scheme 2. Attack by the 

electmphilic cyclitol component at the aromatic position ipso to the tethering element appears to be favored over 

ortho attack. Presumably this is because the positive charge of the EsuIting phenonium ion (12) is stabilized by 

resonance effects involving two oxygens instead of one -11 Migration of the aIkoxymethy1 substituent in 12 

followed by loss of the ortho proton would provide 11.12 
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Scheme 2 

The pitfall represented by the transfotmation of 9 to 11 should be noteworthy to those engaged in or 

considering a synthesis of pancratistatin or related phenanthridone alkaloids.*e-j.2 Furthermore the 

corresponding general reaction, spirocyclization of an ipso-activated arylmethyl ether followed by aIkoxymethy1 

migration, may offer significant synthetic utility. It will be instructive to determine with simpler substrates: 1) 

the necessary degree of ipso vs. ortho activation, 2) the consistency with which an alkoxymethyl group migrates 

in preference to a series of alternative substituents, and 3) the range of ring sizes which can be prepared. 
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